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The behaviour of the stress intensity factors in a piezoelectric medium, weakened by tunnel cracks of 

fairly arbitrary configuration, is investigated. It is assumed that, in the undeformed state, a crack is 

associated with a mathematical cut. Normal or shear forqes of the impulse type, acting on the edges of 

the cracks, are considered as the load. The corresponding two-dimensional boundary-value problem of 

electroelasticity in Fourier transforms is reduced to a system of two singular integral equations for the 

jumps in displacements on the cuts. The result of calculations are given. 

Problems of the impulse excitation of an isotropic medium with a rectilinear finite or semi- 
infinite crack have been investigated, for example, in [l-3]. 

1. We consider, in a Cartesian system of coordinates x,, x2, x3, an unbounded piezoelectric 
medium weakened by tunnel crack-cuts Lj (j = 1, 2, . . . , n) along the xj axis. We will agree to 
assume that the piezoelectric is a transversally isotropic material with the axis of symmetry 
parallel to the x3 axis (it is a crystal of the hexagonal system 6mm, a prepolarized piezoelectric 
ceramic [4]). We will assume that mechanical forces X,,,&, x,, t) (m =l, 2) which vary 
arbitrarily with time, and which are independent of the x, coordinate, act on the edges of the 
crack Lj. We will also assume that the curvatures of the contours Lj and X,,,&, x2, t) belong 
to the class of Holder functions [5] on L = uL, and, moreover, nLj = Cp. Our problem is to 
determine the parameters of the fracture of the medium with the cracks under unsteady 
dynamic loading conditions. 

In this formulation a state of plane strain occurs in x,, x, in a piezoelectric medium with 
defects. The complete system of equations has the following form [6]: the equations of state of 
the piezoelectric medium 

611 =CII~II +c12&22 --‘~a,49 022 =CIZ~GI +c11%2 -h314 

012 =(C,, -C,2@,29 633 =‘?3tE11 kE22)-h33D3 (1.1) 

E3 =-h,,(E,, +E22)+P334 

the equations of motion 

a&J, = p0a2tli / at2, a, =at&,(i,k=i,2) (1.2) 

and Maxwell’s equations 
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a, E3 = pan, J at, a+, = -pm, I at 

a,H, -i&H, =a~,at, a,H, ia+, =o 

(1.3) 

Here o,, E,, Hi, E; and Q are the mechanical stresses and strains, the magnetic and 
electric field strengths and the electric displacement, respectively, cii =ci are the moduli of 
elasticity measured at constant electric induction, h,, is the piezoelectric modulus, p = p& is the 
dielectric “impermeability”, defined for a constant value of the strain, 1-1 is the magnetic perme- 
ability of the medium, and p0 is the density of the material. We will assume that there are no 
external charges and the conductivity of the medium is zero. 

It is necessary to add the mechanical boundary conditions on the edges of the cuts to system 
(l.l)-(1.3). These take the form 

(cT,i +o,)* -e2’W(azz -cr,i +2&)* =f2e*(X: -ix;> (1.4) 

and also the electromagnetic boundary conditions [7] 

E;=E,-, H;=H,-, H;=H; W) 

The “plus” and “minus” superscripts relate to the left and right edges of Lj when moving 
from its beginning aj to its end bj, and w is the angle between the normal to the left edge and 
the ox, axis. Assuming below that the forces on both edges of L, are self-balancing, we will 
put x,: = -x; = X,(m = 1,2). 

2. We will apply a Fourier integral transform with respect to time (with zero initial condi- 
tions) to the initial relations (l.l)-(1.3) 

where the function f&, x,, t) means any of the components of the acoustoelectric field 
described above, and the parameter 61 means the angular frequency. 

Taking (2.1) into account in the transformed plane, we can reduce the system of equations 
(l.l)-(1.3) to two coupled equations in the mechanical displacement vector and the potential 
A = (0, 0, A) PI 

V2U + ograddivu + @ + DraclA = 0 

V2A+k2A=o*divU, H*=rotA, U=(V,,U2) 

o=y:-l, y, =w, 
r: cln 

k,W, C= 
P 

c b 
2 

3, +A. 
P 

z3, x= 2k2b ,*2?!?a (m=12) 

WC, 1 - Cl2 1’ P ’ 33 

(2.2) 

Here U and H* are the Fourier transforms of the displacement vectors u = (nl, u2) and the 
magnetic intensity H = (h,, Hz). The quantity K, represents the piezoelectric effect. 

Introducing the representation U =grad@+rot(kY) (k is the unit vector along the x, axis) 
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into system (2.2), we obtain three differential equations 

(l+o)V*@+y;@+~A=O 

V*‘I’+y;Y=O, V*A+k*A=a*V*@ 

Eliminating A from the first equation of (2.3) and substituting 
equation we obtain 

(2.3) 

the result into the last 

(2.4) 

It follows from (2.3) and (2.4) in particular, that a monochromatic SV-wave and associated 
waves of the following types can exist in a piezoelectric material of class 6mm 

u~)(x, , x2, r) = UC’ exp[-i(or + &x. n)] 

P(X I’ X2* t) = A(“) exp[-i(ot+p,x.n)] 

X=(X,, x2), n=(cosp,sini3) (m,v=l,2) 

where U,$‘) and A(” are the amplitudes of the displacements and the potential in the wave, 
characterized by the wave number p, (v = 1, 2) and p is ;he angle between the normal to the 
radiated wavefront and the x1 axis. 

The general solution of Eq. (2.4) has the form 

aJ = a, + a5 (2.5) 

v$;g E; functions 0, (m= 1, 2) are arbitrary solutions of Helmholtz’s equation (V”+ 
mm * 
Integration of the last equation of (2.3) enables us to determine the function A 

A=-a* $ B,,,@,, B,,,.=-1"- P2 
m=l k2 -pi 

(2.6) 

From (2.9, (2.6), (1.1) and (1.3) we can obtain general representations of the acousto- 
electromagnetic quantities in terms of the functions Y and 0, (m=l, 2) in the transformed 
plane [8] 

u, =a,a+a,y, u, =a2cO-a,y 

4, +s22 =-%IPE(c,,+c~2+2x:B~)~, 

s22 -4, +q,s,, =--4(c,, -q*) 
a2 

at2( 
@+1Y) 

a* s,, -s,, -2is,, =-4(c,, -I+)- 
ay*( 

a-M) 
(2.7) 
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H*=rotA, z=x,+r&, Z=x,-ti2 

3. Considering the boundary-value problem in the exact formulation, that is, not neglecting, 
as is usually done, the magnetic field, we will start from (2.7). This approach, taking into 
account the special integral representations of the potentials, enables us to simplify somewhat 
the procedure for reducing the initial problem to integral equations. Note that the correspond- 
ing boundary-value problem was considered in [6] in the quasi-static approximation. Integral 
representations of the solutions were used, constructed in [9] by the potential method. 

We write the integral representations of the required potentials ap, and Y in the form 

Y(z) = q2 aH~;~2r)4-q3 aHh;r2r),f 
(3.1) 

qm = qm(c) = $(eeiVR, -(-l)me’YR2) (m = 1,4) 

q2 = q2 (6) = ik+ R; i 2,-q, = q3(<) = A.dyR~ I2 

Rln = R,,,(~)=[U,]-(-l)“i[U,], RI, =% (m = 1,2) 

3L=y:/yi, r=l<-zl, <=&+i52, t=5,-it2, <EL. 

Here ds is an element of the arc of the contour L, and H:‘(X) is the Hankel function of the 
first kind of order p. The square brackets denote jumps in the corresponding quantity on L. 

We have the following relations for the functions q,,,(c) which follow from (3.1) 

q2(Q=ih(V+iV*)/2, q3(c)=ih(V-iv*)/2 (3.2) 

Here U,, and V, are the amplitudes of the normal and tangential components, respectively, 
of the displacement vector on L, and p is the radius of curvature of the contour L at the point c. 

The construction of the representations (3.1) is by no means a trivial operation and requires 
some explanation. The functions Y and @, must be solutions of the corresponding Helmholtz 
equations and must satisfy the radiation conditions. In addition, representation (3.1) must 
ensure that there are jumps in the displacements, that there is continuity of the mechanical- 
stress vector, and must also ensure that the electromagnetic conditions (1.5) are satisfied on L. 
By virtue of (2.7), (1.4) and (l.S), these conditions have the form 

(3.3) 
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Representations (3.1) were constructed in such a way that conditions (3.3) were auto- 
matically satisfied. The remaining two complex functions [U.] and [U,] are necessary in order 
to satisfy the remaining mechanical boundary conditions on the cracks. 

4 Boundary conditions (1.4) in Fourier transformants can be written in the form 

(St1 +&)f -P(&* -S,, +2iS,*)* =&2&x; -ix;> 
(4.1) 

(s,, +s,)*-ee-2W(&2-S,, -2i~,2)*=fZe-“(X;+iX;) 

By virtue of the fact that the integral representations (3.1) automatically ensure the contin- 
uity of the mechanical-stress vector on L, it is sufficient to satisfy each of conditions (4.1) on 
only one of the sides of the cut, for example, on the left-hand one. Substituting the limiting 
values of the functions in (4.1) as z -+ & EL we arrive at a system of two complex singular 
integro-differential equations 

(v = 1.2) 

G~“(~r~O)=~AK,sin(~-ao)f~(c,i -c,2)ef2~~(~e*iW~3QO~+~eri~v~ao~)+~”(~,~o) 

G2”(rrr0)=i~,cos(W--o)+Hi(q, -c&e f2wO(F;e*i(v-3%) - F2eT’(Q+%)) + T2”(<JO) 

8,“(6co~=-x~:(~o+(~II -Cl*P**e f?i’vo-““‘)+p-iG2”(~,~o) 

g2”CC.Co) = fHrf(cii -c,2)~2(Y2r)efZ”vo-aO’ -P%“(LCO). T,,(<&o) = WACO) 

T,(LCo) =q(cl, +ci2 -2tci) 
( 

eW . 2Im--re 21~o e 
-W + ,W-2%) 

HO 1 C-60 ’ 

4 = m33 + y2H3(y2r) 

=i(c,i +ci2 -2~;) 
eW *iyo e 

-hu 
T&Co) 2Re--e 

_ eW-2ag) 

HO 1 r-co ’ 

F, = La31 -Y~~(YZ’) 

cn =cg -B:)-‘(g+*(k* -B;)~“(B*+BT-*(~* -lm”(fw) 

Ko = 4@Q3*‘)- $ff)(B,‘), 4 = 4,4(B*r) - c$,ff,(B,r) 

c; =<p:: -p:>-‘cB:(c,I +q* --2+--*(q* +q,)) 

4 (x) =$+H?(x), Hz(x)= A+Hp(x) 
7rx* 

H,(x)=~+~+THf’(x), Nv(~o)=4e*‘Vo T<X;iX;) 

r =I6 - ToI. a0 = ars(C - Co 1. w = v(C). w. = WC0 1 

G=51+iS2r CO=510+iS20r LCOEL 

(4.2) 
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Here the upper signs correspond to v = 1, and the lower signs correspond to v = 2. The 
kernels G,,,, , g,,,, have a singuiar character of the Cauchy type due to the functions T, and T,. 
If the cracks are rectilinear (p==-), the kernel g,,,, is simplified, and by virtue of the assump- 
tions regarding L may possess not more than a logarithmic singuIarity. 

To fix the solution in the class of functions with derivatives that are unbounded on the ends 
of the contour Lj [5], we must add the following additional conditions to (4.2) 

pdr=o, p1ds=o, (i=1,2 ,..., nl (4.3) 
J J 

which express the fact that the jumps in the displacements are equal to zero at the vertices of 
the cuts. 

Hence, the above algorithm for solving the unsteady boundary-value problem for a 
piezoelectric medium with crack-cuts reduces to the following. From system (4.2), (4.3) we 
determine the transformants of the jumps in the normal and tangential displacements on the 
cuts. However, from these functions, using representations (3.1), we establish the potentials QD, 
(v = 1, 2) and Y. Then, from (2.7) in the image plane we determine the acoustoelectromagnetic 
fields in the medium. To complete the operation one reverts to the originals of the required 
quantities using (2.1). 

5. To determine the dynamic stress intensity factors K, and K,, [2], we will obtain the 
principal asymptotic form of the stresses in the neighbourhood of the tip of the crack. It is 
convenient to consider the following combinations 

2(N+iT)=S,, +&, -e-2hV(& -s,, -2&) 

where N and Tare the normal and shear stresses, respectively along the extension to the tip of 
the defect. Retaining only the singular integrals in (5.1) and using (2.7) and (3.1) we obtain 

1 
$ +s,o, =--$I, +c12 

$2-S: +2iSp2 =J-(cl,-cll) 
( 

dR, 

rei 
j- 
LS--z 

_ aj ee -2adC 
-2i‘yd< 

L 6-z 
+(o+2)5_z 

(5.2) 

The densities R,, q, (v = 1, 2; m = 2, 3) occurring here are defined in (3.1). 
We parametrize the contour L, : c = l$5), 5, = &(S,), -1 s 6, 8, s 1. Correspondingly we put 

x(6) = (sys)Jl - a2 )-I, 8,(0,6) E H[-1.11 (m = 1,2) 

By virtue of the formulae describing the behaviour of Cauchy-type integrals in the neigh- 
bourhood of the ends of the line of integration [5], and also by virtue of the asymptotic relation 
PO] 



The unsteady dynamic problem of electroelasticity for an unbounded medium 747 

ki1 r-2 
o(<)eT2”dC = * e*%0 * (c)h(Z) + F,(~) 

2i sin p(z - c)r 
(5.4) 

we can conclude that the integrals in (5.2) possess a root singularity at the vertex of the contour 
c. A complete analysis of (5.2) taking (5.3) and (5.4) into account enables us, after reverting to 
the originals, to determine the stress intensity factors in the following form (the lower sign 
refers to the tip c = b) 

h(C1, +‘12 - 2Ki) Rein, 2(~ 

J2s’(Tl) 
9 

0 * 

~&+&, 
(5.5) 

6 We will consider as our first example a piezoelectric ceramic medium (the material PZT4 [4]), 

weakened by a single rectilinear crack of length 21. The associated fields in the medium are excited by a 

pulsed load of trapezoidal form (Fig. 1). The corresponding spectral functions of this pulse have the form 

(6.1) 

It is convenient to introduce the following dimensionless time parameters (c, is the velocity of an SV- 

wave in the piezoelectric material) t* = c,tl-‘, di* = c2d,l-‘, T’ = c&V’. 
The functions Q(o, rl) (i = 1, 2) were calculated from system (4.2) (4.3), taking (6.1) into account, 

using the mechanical-quadrature method [ll]. The semi-infinite interval of integration in (5.5) was 
replaced by a finite interval [0, 0.1; here the quantity w* was found by numerical analysis so as to obtain 

the minimum error. The number of Chebyshev interpolation nodes on the contour of the cracks was 

taken to be N =15, 20 and 25, since any further increase in N did not lead to any appreciable increase in 
the accuracy of the results. 

Figure 1 illustrates the change in the quantity h, = K; I(o, d(rrl)) as a function of t* when uniformly 
distributed normal forces (X, = 0, X, z 0) acted on the edges of the crack. The parameters of the pulse 
were specified to be T’ = 10, 4 = 1, d, = 8, and a; = c20,1-’ = 1 N/(s m”). 

As can be seen from Fig. 2, because of the inertial effect, the relative dynamic intensity factor h,(t*) 
may exceed its static value ht = 1 by almost 25%. The fact that in the interval llc;‘l < t < 14.6c;‘l the 
quantity h, takes negative values, expresses the tendency of the edges of the crack to join together a 

certain time after the load is removed. If uniform tangential forces act on the crack, which vary in 

accordance with a pulse with parameters T’ =lO, dI =l, d, =8, and c,’ = c,cr,P’ = 1 N/(s m2), then, as 

numerical investigations show, the dynamic effect for the quantity h,(t’) = Ki /(q d(nl)) (compared with 

J.“, = 1) amounts to only 10%. 
As a second example we investigated the case of the interaction between two rectilinear cracks L, and 

L, with the parametric equations E,:’ = 36, 6:’ = 0 and E,p’ = 6, E,?’ = II. It was assumed that crack L, is 
free from load, while normal pulsed forces with parameters T’ =c2The1 = 10, d,’ =c,d,/? = 1, d; = 
c2d2E’ = 8, cr; = C,o,/r = 1 N/(s m2), act on L,, where /z/l, = 1. Graphs of ?L$) = KG /(02 d(d,))(i = 1, 2, 
where 21, is the length of crack Lj) as a function of t’ =c&’ are shown in Fig. 2. Curves 1 and 2 relate to 

cracks L, and L,, respectively. 
It follows from the results of the calculations that in a medium with two cracks the inertial effect has 

greater influence than in a medium with a single crack. As can be seen from Fig. 2, max I %f) I= 2.34, 
whereas in the case of a static load (X, = 0,) I ky) I= 1.45. 
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Fig. 1. 

Fig. 2. 
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